- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Baude, Jane A (1)
-
Dey, Siddharth S (1)
-
Dey, Siddharth S. (1)
-
Heom, Kellie A (1)
-
Heom, Kellie A. (1)
-
Li, Jen M (1)
-
Liu, Estella (1)
-
O’Malley, Michelle A. (1)
-
Sharma, Abhishek (1)
-
Steger, Rowan F (1)
-
Stowers, Ryan S (1)
-
Wangsanuwat, Chatarin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Breast cancer progression is marked by extracellular matrix (ECM) remodeling, including increased stiffness, faster stress relaxation, and elevated collagen levels. In vitro experiments have revealed a role for each of these factors to individually promote malignant behavior, but their combined effects remain unclear. To address this, we developed alginate-collagen hydrogels with independently tunable stiffness, stress relaxation, and collagen density. We show that these combined tumor-mimicking ECM cues reinforced invasive morphologies and promoted spheroid invasion in breast cancer and mammary epithelial cells. High stiffness and low collagen density in slow-relaxing matrices led to the greatest cell migration speed and displacement. RNA-seq revealed Sp1 target gene enrichment in response to both individual and combined ECM cues, with a greater enrichment observed under multiple cues. Notably, high expression of Sp1 target genes upregulated by fast stress relaxation correlated with poor patient survival. Mechanistically, we found that phosphorylated-Sp1 (T453) was increasingly located in the nucleus in stiff and/or fast relaxing matrices, which was regulated by PI3K and ERK1/2 signaling, as well as actomyosin contractility. This study emphasizes how multiple ECM cues in complex microenvironments reinforce malignant traits and supports an emerging role for Sp1 as a mechanoresponsive transcription factor.more » « lessFree, publicly-accessible full text available March 19, 2026
-
Wangsanuwat, Chatarin; Heom, Kellie A.; Liu, Estella; O’Malley, Michelle A.; Dey, Siddharth S. (, BMC Genomics)Abstract BackgroundRNA sequencing is a powerful approach to quantify the genome-wide distribution of mRNA molecules in a population to gain deeper understanding of cellular functions and phenotypes. However, unlike eukaryotic cells, mRNA sequencing of bacterial samples is more challenging due to the absence of a poly-A tail that typically enables efficient capture and enrichment of mRNA from the abundant rRNA molecules in a cell. Moreover, bacterial cells frequently contain 100-fold lower quantities of RNA compared to mammalian cells, which further complicates mRNA sequencing from non-cultivable and non-model bacterial species. To overcome these limitations, we report EMBR-seq (Enrichment of mRNA by Blocked rRNA), a method that efficiently depletes 5S, 16S and 23S rRNA using blocking primers to prevent their amplification. ResultsEMBR-seq results in 90% of the sequenced RNA molecules from anE. coliculture deriving from mRNA. We demonstrate that this increased efficiency provides a deeper view of the transcriptome without introducing technical amplification-induced biases. Moreover, compared to recent methods that employ a large array of oligonucleotides to deplete rRNA, EMBR-seq uses a single or a few oligonucleotides per rRNA, thereby making this new technology significantly more cost-effective, especially when applied to varied bacterial species. Finally, compared to existing commercial kits for bacterial rRNA depletion, we show that EMBR-seq can be used to successfully quantify the transcriptome from more than 500-fold lower starting total RNA. ConclusionsEMBR-seq provides an efficient and cost-effective approach to quantify global gene expression profiles from low input bacterial samples.more » « less
An official website of the United States government
